LORETAによる 自発脳波のROI解析

: Theta-Beta Ratio (TBR) と 気晴らし使用傾向の関連の検討

小林 亮太

広島大学教育学研究科認知研 (中尾研) D2 2019.9.17 @ resting研究会

◆ 感情制御とは...

- ネガティブ感情を緩和したり, ポジティブ感情を高めたりすること
- → 感情の強度や頻度などを調節しようとする試み (Gross, 2013)
- ◆ 代表的な感情制御方略
 - 再評価: 状況や原因を別の観点から捉えなおすこと - e.g., この失敗を乗り越えれば, 成長できる
 - 気晴らし: 注意をネガティブ感情・思考から
 ネガティブでない対象に移行すること
 e.g., 本を読む, 運動をする

→ いずれもネガティブ感情の緩和に有効 (Webb et al. 2012)

◆ 自発脳波 (安静時脳活動) - 何もしていないときの脳活動

- これまでの脳活動研究では刺激によって誘発される
 外因性の脳活動に関する検討が多くなされてきた
 一方で、内因性 (自発的に生じている) 脳活動については、
 ノイズとみなされ検討がなされてこなかった
- → 近年では,内因性の脳活動がノイズではなく, また,様々な心理学的概念との関連が報告されている → ただし,日本での研究はまだあまりなされていない

Theta-Beta Ratio (TBR) Theta power と Beta power の比

- 注意制御と負の相関を有することが報告されている

Angelidis et al 2016 Frontal EEG theta/beta ratio as an electrophysiological marker for attentional control and its test-retest reliability.

- ◆ Theta-Beta Ratio (TBR) と感情制御
 注意制御能力は再評価,気晴らしにも関与している
 注意制御に優れる者は再評価にも優れる
 - 気晴らしも同様

→ もしそうなら, TBRは再評価や気晴らしと関連する?

- ◆目的: TBRと再評価, 気晴らしの関連を検討する
- ◆ 仮説: TBRと再評価,および気晴らしの間に負の相関

◆ 参加者: 大学生33名

♦ 手続き

- 安静時の脳活動を5分間測定
 - 椅子に座り, 眼を閉じた状態での脳波測定
 - 特定の実験課題や操作はなし

◆ 尺度

- 再評価傾向: ERQ_reappraisal
- 気晴らし傾向: CERQ_positive refocusing

◆ 解析

- EEGlabによる前処理をした上で, theta power, beta powerを算出
- → Theta Beta Ratio を算出

◆ 相関分析

- TBR × 再評価傾向 (ERQ): Fig1
- TBR × 気晴らし傾向 (CERQ): Fig2

Fig1: TBR × 再評価

Fig2: TBR × 気晴らし

Note: TBRと感情制御傾向の相関のトポマップ。 濃い青ほど負の順位相関が強いことを示す。

追加検討

◆追加検討

- 相関分析の結果,脳部位に関わらず,TBRとの相関あり
- → 先行研究で関連があるといわれている脳部位のROIを LORETAで作成して, その部位においても, 相関が 認められるかを検討してみたい!
- ひとまず「気晴らし」に着目 (←完全に興味関心が理由)
- → メタ分析 (Morawets et al 2017) によれば、気晴らしにInsulaが関与
- → LORETAを用いて, InsulaにおけるTBRを推定し, 気晴らし傾向との関連を検討してみる!

→ 次ページ以降は, LORETAによるROI作成→周波数帯域 ごとのpowerの推定方法について

Morawetz, C., Bode, S., Derntl, B., & Heekeren, H. R. (2017). The effect of strategies, goals and stimulus material on the neural mechanisms of emotion regulation: A meta-analysis of fMRI studies. *Neuroscience & Biobehavioral Reviews*, 72, 111-128.

LORETAインストール

- 公式サイト (http://www.uzh.ch/keyinst/loreta.htm) からダウンロードできる サイトの半ばくらいにDownloadリンクがある

LORETA-KEY alpha-software

Download

Read the <u>notes</u> before downloading and extracting and running! <u>Licence agreement, download, password</u>

Build-date of current alpha software

Click here to see build-date of the current alpha-software

NOTES (open PDF guide)

ここからダウンロード

1. 電極情報の指定

1-1) LORETAを起動する 1-2) Utilitiesをクリック

1-3) Utility タブの electrode names to coordinateをクリック

U Utilities				
DragDrop FileExplorer Screen 🕶 Help Lef	ftSidel	.ist	RightSideList	ShowList
Electrode names to coordinates		Elect	rode names to coordi	inates
Registering real electrodes Electrodes viewer Electrode coordinates to transformation matrix EEG/ERPs to sLORETA		-Elec Te	trode names to coord	dinates names (one nar
EEGs to cross spectrum Cross spectra to sLORETA Averager		OL	utput file with electro	de coordinates
Arithmetic				

1-4) text file with electrode names... に電極情報を記入した txtファイルを指定する (ドラッグアンドドロップでOK)

→今回は, channel.txtというファイルを使用 (下の画像参照) ※txtファイルには, 電極名が1行ごとに記入されている (右下画像参照)

1-5) Output file... は適宜必要に応じて変更 1-6) Goボタンをクリック 1-7) .sxyzという拡張子のファイルが出力

Electrode names to coordinates	Electrode names to coordinates	
Registering real electrodes	Electrode names to coordinates	02
Electrodes viewer		ČĂ
Electrode coordinates to transformation matrix	Text file with electrode names (one name on each	C5
EEG/ERPs to sLORETA	I:¥ForLoreta¥channel.txt	
EEGs to cross spectrum		
Cross spectra to sLORETA	Output file with electrode coordinates	CP3
Averager	I:¥ForLoreta¥channel.sxyz	CP4
Arithmetic		
Merge files		
EEG to epochs	View output file with electrodes	
Scaling and Baseline		F1
Filtering Time/Electrodes		F2
Format converter	GO	<

🗍 channel - メモ帳

AF3 AF4 AF7

ファイル(F) 編集(E) 書式(O) 表示(V) ヘルプ(H)

23

1. 電極情報の指定

1-8) Utility タブの Electrode coordinates to transformation matrix をクリック 1-9) File with electrode coordinates (1つ目の空白) に, 1-7で出力された.sxyzファイルを指定する

※Choose regularization methodはNone, Select a Zero-erro tomographyについて はひとまずexact LORETA (体験的にsLORETAと結果はあまり変わらないとのこと…)

1-10) 拡張子が txt, spinv, LFT, LFT の4ファイルが出力される

Electrode names to coordinates		Electrode coordinates to transformation matrix		
Registering real electrodes		Electrode coordinates to transformation matrix		
Electrodes viewer		eta antika da sha da asandina tan		
Electrode coordinates to transformation matrix		File with electrode coordinates		
EEG/ERPs to sLORETA		I:¥ForLoreta¥channel.sxyz		
EEGs to cross spectrum				
Cross spectra to sLORETA		Output file with transformation matrix		
Averager		I:¥ForLoreta¥channel.spinv		
Arithmetic				
Merge files		Choose regularization method	- Select a zero-error tomography :	
EEG to epochs		None		
Scaling and Baseline			Standardized LORETA	
Filtering Time/Electrodes	Ξ			
Format converter		Specify SNR (SignalPower/NoiseVariance)	• exact LORETA	
ROI maker 1		Specify relative regularization parameter		
ROI maker 2				
ROI maker 3				
d OPETA to POIo				

2. EEGLab形式→LORETA形式 13

- ◆ EEGLabで前処理したデータをLORETAの形式に変換する
- 2-1) UtilityタブのEEGs to cross spectrum をクリック 2-2) EEG folders/files にデータを読み込む

※読み込み方式は右側のFolder/File modeで切り替え可能 ※ファイル順がぐちゃぐちゃになることも… (ここでは直さなくてもOK)

- 2-3) EEG folders/files の下の3つの空白を埋めていく
- → Number of electrode: 1-4と電極数を合わせる
- \rightarrow Number of time frames per epoch

: サンプリングレート × epoch (区切った時間枠) の長さ

→ Sampling rate (Hz): サンプリングレートを普通に指定

2. EEGLab形式→LORETA形式 14

- ◆ EEGLabで前処理したデータをLORETAの形式に変換する
- 2-4) Frequencies (周波数帯域)の指定 → 適宜必要なものを選択
- → User defined bands の場合には, txtで指定 → 1行目が指定する帯域の数 (下の画像ではδ, θ, α, β, γ の5つ) → 2行目以降に各周波数帯域を指定 (下の画像ではα = 8-13)
- 2-5) Go をクリック 2-6) 読み込んだデータのあるフォルダに, .crss という拡張子のファイルが出力される (おそらく読み込んだデータの数だけ出力) 5 1.5 4 4 8 8 13

認知研の場合 →

 $\begin{array}{ccc} 13 & 30 \\ 30 & 44 \end{array}$

2. EEGLab形式→LORETA形式 15

◆ EEGLabで前処理したデータをLORETAの形式に変換する

2-7) Utilityタブの Cross spectra to sLORETA をクリック
2-8) cross spectrum files には、2-6の.crssファイルを指定
2-9) File with transformation matrixには、
1-10の .spinv ファイルを指定
2-10) Go をクリック
2-11) .slor 拡張子のファイルが出力される

- ◆ LORETAにおけるROIの作成方法
- ROI maker 1: 今回使用する方法。次のページへ。
- ROI maker 2: ブロードマンの脳地図に基づくROIの指定ができるとのこと。
- ROI maker 3: voxelごとにROIを指定していく方法。 先行研究などのROIを再現したい場合などに。

Theoring Thirdy Electrodes	
Format converter	
ROI maker 1	
ROI maker 2	
ROI maker 3	
sLORETA to ROIs	
Constant days to	

◆ ROI maker 1によるROIの指定 3-1) utilityタブのROI maker 1をクリック

3-2) input file with coordinates for the ROI seed points (1つ目の空白) に, ROI情報を指定した.txtを読み込む

 ※ .txt は1行目が作成するROIの数,2行目以降にROIの座標 (x, y, z)と ROI名を指定する (下図は2つのROIを指定した場合)
 ※ ROIの座標はLORETA上で指定できない場合があるらしい... (その場合はその近くのROIを指定すること)

3-3) input file with transformation matrix (option) は適宜。

 ◆ ROI maker 1によるROIの指定
 3-4) select method for defining the ROIs from the... から ROIの大きさを指定する
 → 半径で指定するときは、球の体積の公式 (V= 4/3π r³) で算出 e.g., 先行研究でvolume = 1340mm³の場合は、 r = (1340*(3/4)/3.14)^(1/3) = 6.85 mm

- 3-5) output file... について適宜指定。 3-6) Go クリック
- 3-7) .txt, XX-InterDist.csv, XX-ROI.csv, .slor の4ファイルが出力
- → XX-ROI.csvは, ROI指定されたvoxelが0→1になっている (※複数ROIをしている場合には, 0→2などもありうる]
- → .slorは「viewer」で確認可能 (次のページへ)

↑ Fig A.

х

(Z)

+5

0

-5

+5 cm (X)

.

2つ目のROI

4 1

◆ ROI maker 1によるROIの指定 - viewerによるROIの確認 - (utilitiesを選択したところで) Viewerを選択 (Fig A) - ポップアップした画面の最下層部に3-7で出力された .slorファイルをドロップする → ROIが可視化 (Fig B) ※細かい指定は、YesとデフォルトでOK...? - D XX L LORETA ↓ Fig B. Statistics • Wires • PlotFunc Status Setup • Tutorial • Update • v20190617 Utilities Viewer V SliceViewer LORET Save - AnatColors InitialView - JumpMax JumpMin JumpZero Jump to... Max Help CopyToClipBrd TalMNIconvert -SLORETA (X,Y,Z)=(38,15,0)[mm] ; (0.00E+0) ; 4 B (Y) Low Resolution Electromagn 1つ目のROI +5 Zero-error: Standardi 0 +5 **Connectivity: Functional / E**

-5

0

*

-5

-10

+5 cm (X)

(Y) +5

4. 指定ROIによる解析

◆ 指定したROIの活動を周波数帯域ごとに出力する
 4-1) utilityタブの sLORETA to ROIs をクリック
 4-2) Input sLORETA file に 3-7の.slorファイルを読み込む

このときの並びで,結果が出力されるので, 今後の解析をしやすい形式に並び変えておくことを推奨。

4-3) Input ROI-definitions file には, 3-7で出力された XX-ROI.csvを指定する

4-4) Input variable txt fileは適宜 4-5) Output filename... は必須: フォルダ名とファイル名を指定

e.g., C:¥Users¥Desktop¥LORETAtest¥fileXX 4-6) 右側のtransformation for outpuで出力形式を指定可能 (None or Log 今回はLogで算出) 4-7) Goをクリックする

4. 指定ROIによる解析

◆ 指定したROIの活動を周波数帯域ごとに出力する 4-8).txt ファイルが2つ出力される

- 末尾が-Filelistのファイルは、読み込んだデータの 並び順が出力されている
- もう1つの.txt には, 2-4で指定した周波数帯域ごとの 値が出力されている (次ページ参照:今回は4-6でLog出力を指定)
 - 縦方向: 読み込んだデータの順番
 (e.g., 上から1行目は1人目の実験参加者… 上から12行目は12人目の実験参加者)
 横方向: 指定した周波数帯域ごとの値
 - (e.g., 2-4で δ, θ, α, β, γ の5帯域を指定し, ROIを1つだけ指定した場合には, δ→θ→α→β→γの順で出力。
 - e.g., 2-4で δ , θ , α , β , γ の5帯域を指定し, ROIを3つ指定した場合には, $\delta_{ROI1} \rightarrow \delta_{ROI2} \rightarrow \delta_{ROI3} \rightarrow \theta_{ROI1} \rightarrow_{ROI2} \rightarrow \theta_{ROI3} \rightarrow \alpha_{ROI1} \rightarrow_{...}$ と出力されるとのこと)

4. 指定ROIによる解析

◆ 指定したROIの活動を周波数帯域ごとに出力する 4-8).txt ファイルが2つ出力される

📄 insulaROI-sLorRoiLogSubjW - メモ帳		
ファイル(F) 編集(E) 書式(O) 表示(V) ヘルプ(H)		
 5.0771002-0001 -0.003922-0001 3.6570005-0002 -1.125416E+0000 1.024249E-000 3.102667E-0001 -1.215342E+0000 -0.580355E-0006 -1.933727E+0000 0.083136E-000 8.381318E-000 6.133187E-0003 1.773494E-0001 6.122786E-0001 3.050078E-0000 8.184173E-000 6.933758E-0002 -3.103068E-0001 1.057430E+0000 -5.370562E-0000 9.442354E-002 -1.104334E+0000 5.231210E-0001 1.765938E+0000 2.326286E-0001 9.442354E-002 -1.104334E+0000 5.231210E-0001 1.765938E+0000 2.326286E-0001 9.442354E-002 -1.104334E+0000 5.231210E-0001 1.765938E+0000 7.374744E-0000 9.442354E-002 -1.104334E+0000 5.231210E-0001 1.765938E+0000 2.326286E-0001 9.442354E-002 -1.4347834E+0000 5.851705E-0001 -1.503117E+0000 7.05169E-0001 9.37224E-002 -7.4347835-0001 -3.6046855-0001 -1.103274E+0000 2.49082 E-0001 -1.708460E+0000 -2.259366E-0000 -1.552949E+0000 -1.7842172E-0000 -1.708460E+0000 -2.359366E-0000 -1.552949E+0000 -2.340941E+0000 -7.842172E-0000 -1.65030E-0000 -2.55049E+0000 -1.240941E+0000 -1.364525E-0001 -1.00 1.00 	-9.947277E-0001 6.910995E-0002 -1.205514E+0000 -1.208182E+0000 7.585081E-0001 1.169505E-0001 1.332968E+0000 -1.112151E-0001 8.800628E-0001 1.106315E+0000 -5.623310E-0001 1.808547E+0000 -8.435223E-0001 2.928542E-0001 -1.767306E+0000 -8.612236E-0001 2.932512E-0001 -1.72270E+0000 -6.058033E-0001 -1.081624E+0000 -1.888646E+0000 2.5.215096E-0001 -1.15210 E+0000 -1.241177E+0000 01.353194E+0000 -1.651204+0000 -2.137866E+0000 -1.3178768+0000 -2.706592E+0000 -3.351354E+0001 -1.138617E+0000	-8.281964E-0001 -2.223826E+0000 1.249056E+000 -4.593716E-0001 5.451123E-0001 1.332477E+0000 -1.100516E+0000 1.839892E+0000 -1.18353E+0000 2.498166E+0000 1.665193E+0000 -2.631705E+0000 -2.26082.E+0000 -2.505714E+0000 -2.58344E+0000 -2.861943E+0000 -2.58448E+0000 -2.861943E+0000 -2.54480E+0000 -2.861943E+0000 -2.54480E+0000 -2.85055E+0000 -2.489665E+0000 -3.810688E+0000 -1.829348E+0000 -2.858348E+0000
1.710307E-0001 1.033135E-0000 1.320001E-0001 -1 4808 -1.139830E+000 -5.079136E-000	-3.730624E_0001 -1.562782E+0000 -1.1320 <u>95E+0000 -1.071183E+0000</u> -1.448649E+0000	-1.894303E+0000 -3.048371E+0000 2.024667E+0000 -2.290525E+0000
7.246926E-000 2つ目のROIのδ波power 095E-0001 9.532045E-000 1.456932E+000 -2.647890E-0001 -8.716714E-0001 -2.026445E+0000 -1.445626E+0000 9.390882E-0001 -2.647890E-0001 -8.716714E-0001 -2.026445E+0000 -1.445626E+0000 7.680133E-0001 -6.816852E-0001 1.088 1.655230E-0001 -4.704557E-0001 -4.138 1つ目のROIの6波power	-1.8679 -9.1038 -2.5229 -1.562199E+0000 2.495856E-0001 -1.263978E+0000 -4.797939E-0001 -6.594911E-0001 -1.430632E+0000	5.300148E,0001 2.695358E-0001 -9.439251E-0001 -2.616115E+0000 -1.664186E+0000 -2.861502E+0000 -1.065654E+0000 -2.365369E+0000 -1 755714E+0000 -2 444074E+0000
1.7/9471E+0000 4.162610E-0001 -4.11 3.766658E-0001 -7.546895E-0001 1.448165E-0001 -9.131837E-0001 -3.663349E-000	-2.019892E+0000 -6.747968E-0001 -1.80388 17	目のROIのγ波power
-2.697853E-0001 -1.272297E+0000 -1.312059E+0000 -2.273149E+0000 -1.074899E+0000 -8.218523E-0001 -1.606318E+0000 -1.277601E+0000 -1.955774E+0000 -9.216553E-0001 6.115360E-0002 -1.168623E+0000 -5.354120E-0001 -1.680229E+0000 2.542261E-0001 5.742363E-0001 -4.723573E-0001 -6.076115E-0001 -1.610666E+0000 -1.098166E-0001 -6.066469E-0001 -0.680042E-0001 -0.660001 -1.247401E+0000 -1.082474E+0000) -1.925098E+0000 -1.233572E+0000 -2.12755 -1.619261E+0000 -1.227025E+0000 -1.831606E+0000 -1.018038E+0000 -6.692170E-0001 -1.906708E+0000 -1.076211E+0000 -4.875169E-0000 -1.419167E+0000 -1.550001E-0000 -1.71462E+0000 -2.115551E+0000	-2.655766E+0000 -3.202944E+0000 -1.821604E+0000 -3.050297E+0000 -1.546937E+0000 -2.532564E+0000 -2.704162E+0000 -2.121362E+0000
-2 509670E-0004 -1 267162E+0000 -5 423301E-0001 -1 724766E+0000 -5 684333E-000		
-4.080280E-0001 -1.226305E+0000 -1.125485E+0000 -1.810919E+0000 -1.149392E+0000 -1.637668E+0000 -1.996123E+0000 -1.846509E+0000 -2.315980E+0000 -1.308145E+0000 -1.240888E+0000 -2.120569E+0000 -1.535589E+0000 -2.548316E+0000 -1.142566E+0000 -8.368220E-0001 -5.68163E+0001 -1.486045E+0000 -1.457639E+0000 -6.520244E-000 -0.027266E-0000 -4.061406E-0001 -2.420726E-0001 -7.457639E+0000 -6.520244E-000) -1.768731E+0000 -5.436482E-0001 -1.216741E+0000) -2.263649E+0000 -2.362879E+0000 -2.768937E+0000) -2.133452E+0000 -1.152332E+0000 -2.005510E+0000 -6.56014017E-0001 -1.281020E+0000 -1.262159E+0000	-1.406012E+0000 -2.177509E+0000 -3.221609E+0000 -3.575283E+0000 -2.003036E+0000 -2.835698E+0000 -2.750710E+0000 -2.809001E+0000 1.200046E-0001 -3.6200267E-0001
4 549830E-0001 -9 225006E-0002 2 060636E-0001 -7 832121E-0001 1 658476E+000	3 600569E-0002 2 807841E-0001 -2 986154E-0001	-7 480767E-0001 -9 296889E-0001
縦方向: 読み込まれたデータ順で出力	27人目の実験参加者	33人目の実験参加者

5. 気晴らし傾向との相関分析

◆ LORETAにより出力されたROIごとのpower値 (4-8) から, <u>Theta-Beta Ratio (TBR)</u>を算出し, 気晴らしの使用傾向との関連を検討する

25

5-1) TBRの算出

- 今回はLogでPower値を算出しているので,
 θ波power (マイナス) β波powerで TBRを算出
- ROI1, ROI2それぞれでTBRを算出

5-2) TBRと気晴らしの相関分析

5. 気晴らし傾向との相関分析

◆ LORETAにより出力されたROIごとのpower値 (4-8) から, <u>Theta-Beta Ratio (TBR)</u>を算出し, 気晴らしの使用傾向との関連を検討する

5-2) TBRと気晴らし傾向の相関分析

- ROI1

- ROI2

24

気晴らしに関与する脳部位におけるTBRと, 気晴らし傾向の間に負の相関が (一応) 認められた